5_small.png

Physical AI Lab

Research Lab at Ben Gurion University

Now create.png

What is Physical AI (PAI)?

 

PAI Lab's Vision & Mission

 

On the PAI Methodology

"The PAI methodology inherently combines the considerations of materials, design, and manufacturing. Robots developed using PAI may autonomously perform tasks and maintain homeostasis in unstructured environments by exploiting the physical and computational features of their bodies along with the computational abilities of their "brains". Akin to biological organisms, PAI robotics can either replace digital AI or synergistically complement it by interfacing to a "brain". Many small robots, or those with limited computational functionality, would not include a dedicated central "brain," and their body's computation will guide their performance. Similar to the principles of natural diversity, PAI synthesis refers to robotic systems of any functionality, shape, size, and habitat, with particular emphasis on integrating chemical, biological, and material based functionalities."

PAI Methodology

Physical Artificial Intelligence (PAI) refers to the theory and practice of synthesizing lifelike robots. This is achieved by using skills from the disciplines of materials science, mechanical engineering, computer science, chemistry and biology to evolve a fully-functional robot (in the illustration: robotic bee). The process incorporates the considerations of materials, structure, sensing and actuation, and results in a fully autonomous multi-functional robot.  Adopted from "Skills for Physical Artificial Intelligence", Aslan Miriyev, Mirko Kovac, Nature Machine Intelligence, 2, 658-660, 2020.

PAI as a Multidisciplinary Domain

"A number of disciplines are closely intertwined in the ambitious venture of creating PAI. Mainly, these are materials science, mechanical engineering, computer science, chemistry, and biology. Leading the paradigm shift from robots as an assembly of hard devices to PAI-comprised robots requires a combination of skills in these disciplines. The domains of each discipline indicate the great plurality and diversity of the desirable skills, leaving space for even more. However, such a broad range of skills for a single person is difficult to obtain today, and no systematic educational approaches exist to develop them."

PAI as a multidisciplinary domain

Physical Artificial Intelligence (PAI) is comprised of five main disciplines: materials science, mechanical engineering, computer science, biology and chemistry. Adopted from "Skills for Physical Artificial Intelligence", Aslan Miriyev, Mirko Kovac, Nature Machine Intelligence, 2, 658-660, 2020.

 

Scientific and Educational Activity and Mission

The PAI Lab has been created as a unique scientific and educational platform for research on the new domain of PAI. This multidisciplinary research lab involves in a single place research and facilities characteristic of all five above-mentioned fields to allow for dedicated research at the nexus of disciplines.

Research in the PAI Lab shapes the educational path for future generations of engineers, researchers, and scientists by developing skills in multiple disciplines for interdisciplinary work. PAI lab aims at educating engineers and researchers for the capability of tackling problems requiring multidomain vision and understanding.

 

The PAI Lab's mission is  to develop breakthrough approaches, methodology, and educational basis in physical AI via unveiling the scientific fundamentals of creating nature-like intelligent and collaborative robotic systems, allowing for symbiotic human-robot and nature-robot ecosystems. ​

PAI Cover Nature Machine Intelligence

Cover of Nature Machine Intelligence, Issue of November 2020.

Based on the "Hands of creation" image, showing human hands creating PAI by using skills from 5 disciplines. Image credit: Aslan Miriyev Mirko Kovac / Empa and Imperial College London; Cover design: Karen Moore.

People

 
IMG_3825.JPG

Dr. Aslan Miriyev

Director and Principal Investigator (PI), The PAI Lab

Senior Lecturer (Assistant Professor), Department of Mechanical Engineering

Webpage

Email

Graduate students

Laboratory technician

Opportunities

 

PAI Lab welcomes talents. Suppose you are passionate about the ideas of PAI and about contributing to the creation of sustainable and symbiotic human-robot and nature-robot ecosystems. In that case, PAI Lab is the place for you.

To apply for a position, please contact Dr. Aslan Miriyev via email. Before you apply, please make sure you have checked and/or applied to any available sources of scholarships (internal and/or external). Please mention any obtained or applied scholarships in your position application email.

Importantly, please note that a successful candidate is expected to:

  • Be interested in (self-) learning and implementing skills and knowledge from disciplines other than your current major. PAI research is at the heart of the interdisciplinary nexus. In your research, you are expected to be open to the involved factors originating from various domains, be curious about the related interdisciplinary interfaces, and understand their interaction mechanisms.

  • Have excellent written and spoken English skills. This is an absolute prerequisite as most of the information in the scientific-technological world today is in English. As a leader in your research vector, you are expected to understand the state of the art and formulate and communicate your research in English.

  • Have proven self-learning skills. We are surrounded by an infinite amount of information available at various sources. We need to find, self-learn, adapt and implement it to the needs of our research. The importance of this skill has constantly been increasing, and it is mandatory for multidisciplinary research. 

  • Have proven commitment and self-discipline. Studies and research require many efforts, which may all be a high priority and need to be done simultaneously. You are expected to commit to your tasks and duties and their timely delivery in the PAI Lab. Self-discipline is mandatory to efficiently distribute your time for fruitful work down to fine details and avoid overloading yourself and your colleagues.

Postdoc Opportunity 

An excellent opportunity for a postdoc in the PAI Lab: Zuckerman Program welcomes submissions from the US- and Canada-based candidates for a fully-funded postdoc in Israel. BGU deadline: March 1, 2022. If interested, please first directly contact Dr. Aslan Miriyev (miriyev@bgu.ac.il).

Click on the image below for more details (a new pdf file will open):

 
Calls_For_Nominations_Postdocs_2022-2023_BGU.jpg
 

Contact us

To contact the PAI lab, please email the Lab Director, Dr. Aslan Miriyev.

 

Email:

miriyev@bgu.ac.il

Physical Address: 

Ben-Gurion University of the Negev

Department of Mechanical Engineering

Marcus Family Campus

1 Ben-Gurion blvd.

Beer Sheva 8410501

Israel

52.png